
J. Fluid Mech. (2000), vol. 402, pp. 195–210. Printed in the United Kingdom

c© 2000 Cambridge University Press

195

A simple hydrodynamic model for
transition boiling

By S A N G W. J O O1† S T E P H E N H. D A V I S1

AND S. G E O R G E B A N K O F F2

1Department of Engineering Sciences and Applied Mathematics, Northwestern University,
Evanston, IL 60208, USA

2Department of Chemical Engineering, Northwestern University, Evanston, IL 60208, USA

(Received 26 March 1999 and in revised form 30 July 1999)

A vertical column of an inviscid fluid, heated uniformly from below through a
horizontal rigid bottom, is studied, with focus on the dynamics of the vapour/liquid
interface near the three-phase (contact) line. The interfacial motion is induced by the
competing effects of liquid feeding from above and evaporative mass loss through the
interface. A linearized solution is obtained that describes the location of the contact
line. The solution is used to study the transition processes to and from film boiling,
where part of the liquid, lying on top of a vapour layer, can spontaneously be drawn
downward and touch the heated bottom. Recession or advancement of the contact
line then determines whether the film boiling is sustained or broken. It is seen that the
correct contact-line dynamics cannot be predicted solely from a global mass balance
in the liquid column.

1. Introduction
When a pool of liquid is heated from below beyond a critical temperature, a

complex sequence of boiling phenomena occur as the superheat is increased. The
states are usually classified as natural convection, nucleate boiling, transition boiling,
and film boiling, in the order they appear as the heating intensity is increased, and
have been studied intensively, as reviewed by Rohsenow (1971), by Dhir (1998), and in
a monograph by Carey (1992) among many others. We shall not repeat the discussions
of these immense areas, but rather provide here a focused view that prompted the
present study.

In nucleate boiling vapour bubbles are created at the heated bottom, which grow,
merge, and launch as the process develops. Due to the works by Snyder & Edwards
(1956), Moore & Mesler (1961), and Cooper & Lloyd (1969), it is believed that
a microlayer exists between the bubble surface (vapour/liquid interface) and the
heated bottom. The heated bottom thus is mostly in direct contact with liquid. The
contribution of this microlayer to evaporation and, in turn, to the heat-transfer
characteristics is a subject of many recent investigations, including that by Wilson,
Davis & Bankoff (1999).

When the superheat is sufficiently large, the film-boiling state is reached, where
the liquid is no longer in contact with the heated bottom, but is separated by a
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Figure 1. A schematic configuration for boiling near the lower critical heat flux. (Vertical scale of
the vapour phase highly exaggerated.)

continuous film of the vapour. Film boiling has been relatively amenable to more
straightforward studies, as discussed in the aforementioned reviews.

Between the ‘fully developed’ nucleate boiling and the onset of the film boiling there
is a transition state, where the swapping of the phases in contact with the heated
bottom should occur. The liquid phase (the microlayer and the bulk) recedes and is
gradually displaced by the vapour phase at the heated bottom. If the superheat is
decreased from the film-boiling state, the reverse will occur. In this regime, the heat
flux decreases with the increase of the bottom temperature, so that there is a minimum
heat flux near the onset of the film boiling, usually called the lower critical heat flux.
One of the more important recent needs in the study of transition boiling (also called
partial film boiling) is an accurate assessment of this lower critical heat flux, which
requires more rigorous analyses and careful observations on the wetting/dewetting
process, or the evolution of the vapour/liquid interface near the heated bottom.

The experimental data of Witte & Lienhard (1982) on film boiling show that
the liquid/solid-surface wetting characteristics alter the lower critical heat flux and
thus the critical superheat for a sustained film boiling. They indicate that at least
near the lower temperature end of the film boiling intermittent contact between the
liquid and the heated bottom occurs. Stability analysis (Panzarella 1998, for example)
of the vapour liquid interface in film boiling also shows a spontaneous incipient
rupture process of the vapour film. The liquid, upon touching the bottom (vapour-
film rupture), may either spread (toward transition boiling) or vaporize (toward film
boiling), depending upon the competitive effects of evaporation and feeding from the
liquid bulk above. The dynamics of the wetting/dewetting process, or the liquid/solid
contact, near the onset of film boiling again is a critical subject for investigation.

As a generic case for the aforementioned transition processes, we picture a film-
boiling (or transition) state with a liquid ‘finger’ making a contact with a heated
bottom, as shown in figure 1. The width of the finger and the depth of liquid bulk
are ‘roughly’ 2d and H , respectively. If a film-boiling state were to be recovered, the
tip of the liquid finger in contact with the bottom would narrow via evaporation
sufficient to overcome the liquid flux downward from the bulk. The two contact lines
would recede until they merge with each other, after which the finger tip would detach
from the bottom, making the vapour film continuous. The opposite would be true
for an evolution toward transition boiling. The contact lines would advance, resulting
in the wetting of the heated bottom. The liquid flux from the bulk would dominate
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the evaporation mass flux across the vapour/liquid interface. In order to understand
better the fundamental nature of these evolutions, we study here a model problem
that captures the effects of evaporation mass flux and downward liquid flow due to
gravity. We focus on the local behaviour of the finger near the heated bottom, and
model it as a vertical inviscid liquid column extended infinitely upward from the
bottom. The finger will be assumed to stay symmetric, so that no-flux conditions can
be imposed along the symmetry line, which will be replaced by an insulating rigid
wall. The pressure in the vapour phase will be considered uniform, and its dynamics
decoupled from that of the liquid. In the following sections, we formulate this model
problem (§ 2), obtain a uniformly valid analytical solution that describes the evolution
of the vapour/liquid interface (§ 3), evaluate the solution to show boiling transitions
(§ 4), and conclude in § 5.

2. Formulation
In transition and film boiling the characteristic Reynolds number is usually large.

We thus consider an inviscid liquid, with constant density ρ, thermal conductivity k,
and heat capacity cp, bounded below by a rigid bottom and unbounded vertically
upward. Laterally, it is bounded by an insulating rigid wall to the right and by the
interface with its vapour phase to the left. The bottom plate is heated, and supplies
a constant heat flux to the liquid. The heat is transferred away from the bottom, and
is also lost across the vapour/liquid interface due to evaporation. Figure 2 shows the
flow configuration, where the liquid (and so the interface) is as yet undisturbed from
its initially uniform width d.

The flow in the liquid phase is described by the Laplace equation

φxx + φyy = 0 for x > 0, −1 6 y 6 h, (2.1)

where the velocity potential φ(x, y, t) is measured in units of the thermal diffusivity
κ of the liquid and the subscripts denote partial differentiation. Here x and y, in
units of d, are directed vertically upward along the initial undisturbed vapour/liquid
interface and toward the vapour phase along the heated bottom, respectively. The
dimensionless time t is in units of d2/κ. The location of the vapour/liquid interface
y = h(x, t) varies with time and space. The energy equation for the liquid phase is



198 S. W. Joo, S. H. Davis and S. G. Bankoff

stated as
dT

dt
= Txx + Tyy for x > 0, −1 6 y 6 h, (2.2)

where d/dt = ∂t + φx∂x + φy∂y . The dimensionless temperature T measures the
superheat relative to the latent heat L:

T ≡ ρcp
(
Ť − Ts

)
/L, (2.3)

where Ť and Ts are, respectively, dimensional and saturation temperatures.
On the bottom (x = 0) there is no penetration of the liquid

φx = 0 on x = 0, −1 6 y 6 h, (2.4)

and constant heat flux

−Tx = ε on x = 0, −1 6 y 6 h, (2.5)

where

ε =
ρcpdq

kL
(2.6)

measures the magnitude of the imposed heat flux q. On the insulated side (y = −1)
there is zero flux of mass and heat,

φy = Ty = 0 on y = −1. (2.7)

On the vapour/liquid interface y = h(x, t), the jump in normal traction is balanced
by the capillary force and the vapour thrust, which can be expressed through the
Bernoulli equation,

φt + 1
2
(φ2

x + φ2
y) + Gh− S hxx

N3
+ DJ2 = 0 on y = h, (2.8)

where

G =
gd3

κ2
(2.9)

measures the initial width of the liquid, J(x, t) is the non-dimensional evaporation
mass flux, and N =

√
1 + h2

x. The parameters,

S =
γd

ρκ2
, (2.10)

and

D =
ρ

ρV
, (2.11)

measure the interfacial tension γ and the ratio of liquid to vapour (ρV ) densities.
The vapour thrust DJ2 describes the extra stress exerted on the interface due to
the evaporation; vapour particles, launching at substantially increased velocities upon
phase change (due to the conservation of mass flux across the interface), apply normal
stress on the interface. In (2.8) other dynamics of the vapour are ignored for D � 1.
A detailed derivation for a viscous equivalent of this one-sided model is given by
Burelbach, Bankoff & Davis (1988). The interface is not a material surface in the
presence of the evaporation, and its mass balance is defined by

φy −NJ = ht + φxhx on y = h, (2.12)
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where the mass flux J is directed into the vapour, positive (negative) for evaporation
(condensation). The energy balance across the interface

NJ + Ty − Txhx = 0 on y = h (2.13)

states that the heat conducted through the interface is used to vaporize the liquid
particles. Here no heat conduction in the vapour phase is taken into account. A linear
constitutive model

KJ = T on y = h (2.14)

is adopted to relate the evaporation mass flux to local interface temperature. Here
K measures the degree of non-equilibrium at the evaporating interface, and can be
related to the kinetics of the vapour particles. A rigorous discussion of this constitutive
model, including its limitations, is reported by, among others, Panzarella (1998), who
also presents a more general constitutive equation. Another noteworthy discussion
that can lead to the above interfacial conditions is given by Prosperetti & Plesset
(1984).

Unless the capillary term in (2.8) is ignored, additional conditions must be specified
at the contact line that relate the contact angle θ to other flow variables. For a
non-material interface, the contact line can advance or recede solely due to mass
flux across the interface. When the contact line is in motion, the dynamic contact
angle can be substantially influenced by mass loss (Anderson & Davis 1995). For the
present analysis we set

hx = 0 at x = 0; (2.15)

the contact angle θ is maintained at π/2. In the presence of the evaporation, this
condition is not to be confused with the fixed-contact-angle condition for a material
surface.

Initially the liquid is at rest, at uniform saturation temperature, and has a flat
undisturbed vertical interface:

φ = T = h = 0 for t < 0. (2.16)

3. A uniformly valid solution
Noting that the superheat parameter ε is much smaller than unity, we expand the

dependent variables in terms of ε:

W = εW 1 + ε2W 2 + . . . , (3.1)

where W =(φ, T , h, J). While the other parameters are set to be of order unity,
G = O(ε), limiting the analysis valid for small enough liquid widths, and D = o(ε−1),
eliminating the effect of vapour thrust from the leading-order behaviour.

At the leading order in ε, one obtains a linear system:

ϕxx + ϕyy = 0 for x > 0, −1 6 y 6 0, (3.2)

Tt = Txx + Tyy for x > 0, −1 6 y 6 0, (3.3)

ϕx = Gt on x = 0, −1 6 y 6 0, (3.4)

T1x = −1 on x = 0, −1 6 y 6 0, (3.5)

ϕy = T1y = 0 on y = −1, (3.6)

ϕt − Sh1xx = 0 on y = 0; h1x = 0 at x = 0, (3.7)
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ϕy − J1 = h1t on y = 0, (3.8)

T1 +KT1y = 0; KJ1 = T1 on y = 0, (3.9)

ϕx → 0, h1 → 0, T1 → 0 as x→∞, (3.10)

ϕ = T1 = h1 = 0 for t < 0. (3.11)

Here a new velocity potential ϕ ≡ φ1 + Gxt has been introduced, which in effect
translates the vertical downward flow from infinity into an equivalent upward bottom
motion with no flow at infinity (ϕx → 0 as x→∞ as above). A rescaled parameter G
of order unity is used in place of G by taking G = εG.

The bottom-boundary condition (3.4) describes the falling of the liquid column
with a constant acceleration (free fall), since the fluid is inviscid. The mass flux of the
liquid from infinity increases indefinitely in time, and will eventually dominate any
evaporative mass flux into the vapour; the contact line will always advance after a
sufficient amount of time, and the liquid will completely wet the heated bottom. In
order to model situations in which the external flow and evaporation compete one
must modify equation (3.4). For example

ϕx = Q
(
1− e−(G/Q)t

)
on x = 0. (3.12)

For small time, the speed increases with constant acceleration G as in (3.4), but
instead of growing linearly forever, it asymptotes to a finite terminal value Q, which
can be considered as an external parameter that determines the liquid feeding rate
from infinity. If one wishes, one can relate this to the hydrostatic head that forces the
liquid down through the base of the finger (of depth H) in figure 1,

Q =
d

κ

√
2gH. (3.13)

The parameter Q will be defined more accurately when this study is generalized to
include the dynamics of the vapour phase.

It is to be noted that the above linear system resembles that for the linear inviscid
wavemaker problem, where a rigid wall (the bottom in figure 2) translates parallel
to the undisturbed free surface with a prescribed velocity. In the absence of evap-
oration (J = 0), the temperature field is decoupled, and the above is exactly the
wavemaker problem in the absence of gravity. The wavemaker problem has been
studied intensively as an important model problem for a contact-line singularity on
a surface-piercing body in translation in the inviscid theory. Peregrine (1972) finds
a logarithmic singularity (infinite displacement) at the contact line. Roberts (1987)
obtained a non-singular local similarity solution near the contact line. It was later
realized by Joo, Messiter & Schultz (1990) that a straightforward solution in a Fourier
integral serves as a uniformly valid solution that recovers the local similarity solution
near the contact line and the outer (Peregrine’s) solution away from it. In the present
study the solutions will be obtained for the above system in terms of Fourier integrals.

The temperature field at this leading order is purely diffusive, and is decoupled
from the flow field. The solution for (3.3) with the boundary conditions (3.5), (3.6),
and (3.9) that satisfies (3.10) and (3.11) is expressed as

T1 =
2

π

∞∑
n=1

cos λn(y + 1)

∫ ∞
0

F1n(k, t) cos kx dk, (3.14)
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where the eigenvalues λn are obtained from

cos λ−Kλn tan λn = 0 (3.15)

and

F1n =
4 sin λn

(λ2
n + k2)(2λn + sin 2λn)

[
1− e−(λ2

n+k
2)t
]
. (3.16)

The evaporative mass flux then is obtained from (3.9) as

J1 =
2

π

∫ ∞
0

∞∑
n=1

F2n cos kx dk, (3.17)

where

F2n =
2 sin2 λn

(λ2
n + k2)(1 +K sin2 λn)

[
1− e−(λ2

n+k
2)t
]
. (3.18)

Through the linearization of (3.9) the dependence of the temperature field on the
interface configuration is eliminated, so that the evaporative mass flux is independent
of h1.

In solving (3.2) with the remaining conditions, we write

ϕ =
2

π

∫ ∞
0

ϕ̌ cos kx dk, (3.19)

and

h1 =
2

π

∫ ∞
0

B(k, t) cos kx dk. (3.20)

The Fourier cosine transformation ϕ̌, compatible with (3.6) and (3.12), must be
written as

ϕ̌ = A(k, t) cosh k(y + 1)− Q

k2

(
1− e−(G/Q)t

)
. (3.21)

The interfacial boundary conditions (3.7) and (3.8) then yield a coupled system of
equations for A and B:

At cosh k + Sk2B =
G

k2
e−(G/Q)t, (3.22)

Ak sinh k −
∞∑
n=1

F2n = Bt. (3.23)

A can be eliminated between these, giving rise to a single ordinary differential equation
for the Fourier cosine transform B(k, t) of the interface configuration:

Btt + β2B = Ge−(G/Q)t tanh k

k
−

∞∑
n=0

2 sin2 λn

1 +K sin2 λn
e−(λ2

n+k
2)t, (3.24)

where

β = k
√
Sk tanh k. (3.25)

The initial conditions (3.11) for ϕ and h1 provide those for B:

B(k, 0) = Bt(k, 0) = 0. (3.26)

The solution to the linear equation (3.24) can finally be obtained as

B = B1 + B2, (3.27)
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where the isothermal contribution

B1 =
G

(G/Q)2 + β2

tanh k

k

(
e−(G/Q)t − cos βt+

G

Q

sin βt

β

)
(3.28)

is due to the bottom translation (or the liquid flux from infinity) and

B2 =

∞∑
n=1

[
cos βt− (λ2 + k2)

sin βt

β
− e−(λ2

n+k
2)t

]
1

(λ2
n + k2)

2
+ β2

2 sin2 λn

1 +K sin2 λn
(3.29)

governs the effect of evaporation mass flux on the interface configuration.
Using B and consequently A, the interface configuration h and other flow variables

can be completely described in terms of Fourier integrals. In the following section,
the integral for h is evaluated numerically in order to examine the interface evolution
near the heated base.

4. Evaluation of the interface configuration
The Fourier cosine integral (3.20) is evaluated by an adaptive method that uses

10-point Gauss–Legendre and 21-point Kronrod formulae with automatic subinterval
adjustment with maximum absolute error of 10−9 for small to moderate k and Filon’s
method for sufficiently large k to capture rapid oscillations of the integrand accurately.

The parameters to consider are K , Q, G, S , which are related to reciprocal evapora-
tion intensity, liquid feeding from infinity, width of the liquid column (or ‘finger’), and
interface tension, respectively. It can be easily seen from (3.9) that K = ∞ (K = 0)
corresponds to zero (maximum) evaporation. When K = ∞ the interface behaves
as an insulating surface, and heat from the bottom is transferred vertically upward.
No evaporation would occur. On the other hand, when K = 0, heat transferred to
the interface is instantly used for vaporization. The interfacial temperature remains
at the saturation value, and the evaporation mass flux is maximized. The values
K = 0, 1, 100 will be used below for strong, moderate, and weak evaporation, respec-
tively, for illustrative purposes. The parameter Q is also varied from zero (no feeding
from infinity, or pure evaporation) to 10 (high feeding rate). The parameter G only
affects the transient flow, and thus is set to unity for convenience. The linear system
listed in the previous section can easily be rescaled to eliminate the parameter S , and
so one can set S = 1.†

Figure 3 shows instantaneous interface configurations of a liquid column for
different times when there is no liquid feeding from infinity (Q = 0). The interfacial
deformation is purely due to evaporation. The evaporative mass loss is strongest at
the contact line, and since no liquid is supplied from above, there is monotonic mass
loss. The contact line thus would recede with time indefinitely. The recession of the
interface near the contact line generates capillary waves that travel away from the
base. As the depletion near the contact line increases with time, this wave grows in
time. The amplitudes of the humps appear most pronounced near the bottom, and
decay monotonically away from it. Interfacial configurations for smaller times are
shown in a magnified view in (b). The evolving configurations of the interface shown
suggest the possibility of a local similarity solution.

† In the linear system (3.2)–(3.12) the interfacial-tension parameter S can be eliminated by setting
x = Sξ, y = Sη, t = S2τ and rewriting the system in terms of the new independent variables (ξ,
η, τ). It is seen then that h1 and J1 are replaced with h1/S and J1/S , respectively, and the parameters
(K , Q) with (SK , Q/S).
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Figure 3. Interface configurations for pure evaporation: Q = 0, S = K = 1. (a) Three different
times, t = 1 (——), t = 10 (- - - -) and t = 100 (– · –); (b) magnified view for t = 0.1 (- - - -) and
t = 1 (——).
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Figure 4. Interfacial configurations at a large time for pure evaporation: Q = 0. S = 1, t = 100,
and K = 0 (——), K = 1 (- - - -) and K = 100 (– · –).

In figure 4 interface configurations for pure evaporation (Q = 0) are shown again
for three different values for K at a sufficiently large time. As mentioned above, K = 0
shows the highest rate of evaporation, and thus the most pronounced contact-line
recession. With weak evaporation, there is apparently no deflection of the interface.
A more detailed figure (not shown here) clearly shows the capillary wave, albeit with
small amplitude. The phase speed of the wave seems to decrease only slightly with K .

The location of the contact line for pure evaporation is plotted against time in
figure 5 for three different values for K . In all cases shown, the contact-line height
decreases monotonically and seems to equilibrate to a constant rate (speed) for
sufficiently large time. It is expected that the contact line eventually will reach the
right-hand boundary y = −1 (merging of the contact lines receding from the two
sides of the symmetry line), which, however, cannot be predicted accurately by a
linear theory.
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Figure 5. Contact-line motion for pure evaporation: Q = 0. S = 1, and K = 0 (——),
K = 0.1 (- - - -), K = 10 (– · –) and K = 100 (− · ·−).
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Figure 6. Interface configurations for an isothermal flow (no evaporation) : K →∞, Q = S = 1.
Shown for three different times, t = 1 (——), t = 10 (- - - -) and t = 100 (– · –).

Figure 6 shows instantaneous interface configurations in the absence of evaporation
(isothermal flow). The flow is induced purely by the liquid feeding from above, without
any mass loss through the interface. The contact line thus advances monotonically.
Figure 7, where the contact-line locations are plotted against time for three different
values for the liquid feeding rate Q, seems to indicate that the speed of the advancing
contact line reaches an equilibrium value in time. As in the purely evaporative cases,
a capillary wave is generated near the bottom, and travels upwards. It is interesting
to note that the identical capillarity effect makes the interface configurations for the
purely evaporating and the isothermal flows almost mirror images (with respect to
the x-axis) of each other. One might expect then that a proper superposition of these
two cases would annihilate the capillary wave.

Consider now cases where both the evaporation and the feeding from above
are present. It is obvious that if either of these effects is dominant, the interface



A simple hydrodynamic model for transition boiling 205

300

200

100

0 250 500
t

h1

750 1000

Figure 7. Contact-line motion for isothermal flow: K →∞, S = G = 1, and Q = 0.1 (——),
Q = 1 (- - - -) and Q = 10 (– · –).
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Figure 8. Interface configurations when Q = 1. S = G = 1, and K = 0 (——), K = 1 (- - - -) and
K = 100 (– · –). (a) t = 1; (b) t = 100; (c) t = 1000.

configurations and the contact-line dynamics would be similar to the cases already
discussed above. Thus consider cases where the two effects compete.

Interface configurations at three different times are shown in figure 8 for three
different values of the evaporation rate while the liquid feeding rate is fixed at
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Figure 9. Contact-line location against time when Q = 1. S = G = 1, and K = 0 (——),
K = 1 (- - - -) and K = 100 (– · –).

Q = 1. In all cases the characteristic capillary wave is generated near the bottom
and travels upward, as time progresses. The amplitudes of this wave (height of the
humps), however, do not increase monotonically as in the previous cases. For all cases
shown, they instead seem to reach maximum values and then become less and less
pronounced with time. This transient behaviour also depends on G, the width of the
liquid column. When the evaporation is strong (K = 0) in comparison with the liquid
flow downward accelerating due to gravity, the interface near the contact line recedes
initially. The contact line recedes. As the downward liquid flow increases, the rate
of net mass loss from the liquid decreases; the liquid feeding from above weakens
the interface deflection and forces the contact line to advance. For still larger times,
the interface corrugations become less and less conspicuous. When the evaporation
is weak (K = 100), the effect of liquid feeding is dominant. The liquid tends to wet
the bottom gradually until the evaporative effect eventually dominates the wetting
process at a large time. The liquid then dewets the bottom gradually. The locations of
the contact line for these cases are plotted against time in figure 9. After the contact
line reaches a maximum wetting (dewetting) position, it slowly recedes (advances), as
discussed above. Integrations for longer times indicate that the decaying behaviour is
monotonic for all cases. For the cases shown, the contact line appears to asymptote
to an equilibrium value.

A global balance between the mass flux from infinity and that due to evaporation
gives a curve separating regions of wetting and dewetting, as shown in figure 10. The
total evaporative mass flux at t = ∞ can be evaluated as judged by bulk averages

I(K) =

∫ ∞
0

J1(x,∞)dx. (4.1)

The net mass balance then gives

Q = I(K) (4.2)

as the boundary between global mass loss and gain. Along this boundary, liquid
fed from above exactly balances the evaporation mass loss, so that the total liquid
mass is kept constant. The ‘hyperbolic’ curve in figure 10 illustrates this boundary
for 0 6 K 6 10. Above this line, the mass flux from infinity exceeds the evaporative
mass flux, so that the total mass is constantly increasing. Below the line, the opposite
is true. However, since the interface can deform, this global criterion is not predictive
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Figure 11. Evolution of the contact line when S = 1 with (a) K = 0 and Q = 1.2,
(b) K = 1000 and Q = 0.8.

of the contact-line motion, which determines the local wetting/dewetting. The correct
boundary between wetting (W) and dewetting (D), obtained via integration of the
solution (3.20), is shown in figure 10. This line starts at approximately (0, 1) in the
(K,Q)-plane, and slopes downward very slowly with the increase of K . The decay of
the boundary with the decrease of the evaporative mass flux is much less pronounced
than in the global balance. With the increase (decrease) in K , the net evaporative
mass loss would decrease (increase), but the evaporative mass flux tends to more
(less) localized near the contact line, resulting in contact line motions that are almost
insensitive to K .

In figure 11 two cases that show the discrepancy between the global criterion and
the local prediction are shown. Case (a) is for (0, 1.2) in the (K,Q)-plane. The global
criterion predicts a mass loss, and thus dewetting, but the local behaviour shows a
monotonic increase of contact line location, and thus wetting. As seen in figure 6,
the free-surface elevation due to the mass flux from infinity is most pronounced near
the contact line. Although the global evaporative mass flux exceeds the mass flux
from infinity, the local evaporative mass loss near the contact line is not sufficient
to suppress this pronounced elevation. Wetting results despite gradual net mass loss.
Figures 5 and 7 reveal that the sensitivity of contact-line motion to Q is much higher
than to K . A small decrease in Q gives a conspicuous decrease in the contact-line
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Figure 12. The detachment time tL, in thermal-diffusion scale, when ε = 0.1 for
K = 0 (——), K = 10 (- - - -) and K = 100 (– · –).

advance, whereas the increase in K does not provide an equally strong decrease in
the contact-line recession. As K increases, the surface non-uniformity increases, and
the evaporative mass flux is more and more localized near the contact line. Shown in
figure 11(b) is a case for (K,Q) = (1000, 0.8), which is far off the range of figure 10,
but well within a region of global mass gain but local dewetting. The contact line
advances for a while, reaches a maximum, and then recedes monotonically. Dewetting
occurs despite gradual net mass gain. Although the global evaporative mass loss is
exceeded by the mass influx from infinity, the localized evaporative flux near the
contact line is sufficient to overcome the substantially decreased contact-line elevation
for the chosen Q.

If the contact line recedes continuously, it can touch the lateral insulating boundary
located at y = −1. Two contact lines of the liquid finger in figure 1 will merge, and
the finger tip would then detach itself from the heated bottom, resulting in a film-
boiling state. An extrapolation of the present linear theory can be used to roughly
estimate tL, the detachment time. The time tL is plotted in figure 12, where the small
parameter ε is set to 0.1. The range of Q plotted is consistent with the dewetting
range shown in figure 10, and varies only slightly with the three values of K chosen.
As Q is increased from zero, the mass flux from above increases, and so does tL.
Near Q = 1 the boundary between wetting and dewetting exists, where tL approaches
infinity. Increase in K retards the evolution toward film boiling, as expected, but not
as efficiently as the increase in Q, for reasons explained above.

5. Concluding remarks
A vertical finger of inviscid liquid heated from a horizontal bottom is studied with

a focus on the dynamics of its interface with the vapour phase. The flow is mainly
induced by the liquid feeding from above and the evaporation mass flux through the
interface.

A uniformly valid solution of a linear problem that accurately describes the evo-
lution of the interface with the moving contact line is obtained in terms of Fourier
cosine integrals, which is then evaluated numerically to examine the configurations
of the interface under various conditions.
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When the liquid feeding from above is dominant, the liquid wets the surface. When
the evaporative mass flux is dominant, dewetting occurs. In both situations, capillary
waves are generated near the contact line, and propagate away from it. The interface
corrugations, or the amplitudes of the capillary wave, do not grow monotonically
when the liquid feeding and the evaporation mass flux are comparable. They reach
maxima, and then decay.

The parametric regions for wetting and dewetting are identified. It is shown that
these regions cannot be identified by a simple global mass balance. Local dynamics
dictates the contact-line motion and thus the wetting/dewetting behaviour. The global
mass balance provides conditions of the mass influx from above sufficient for wetting
when the evaporative mass flux is strong (small K), whereas it provides only necessary
conditions for wetting otherwise.

The present study is prompted by the necessity of a more rigorous analysis for
the dynamic behaviour of the vapour/liquid interface in transition and film boiling
processes. The one-sided inviscid model described here must be generalized further
to yield more precise results. In a more realistic model, the mass influx from above,
described by the parameter Q here, must be coupled with the flow dynamics near the
contact line.

This study is supported by the Engineering Research Program of the Office of
Basic Energy Sciences, US Department of Energy. The authors gratefully
acknowledge Mr Chang H. Park of Yeungnam University for his help with the figure
preparation.
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